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1. Evolution of Robotics

a. What is the Problem?

I. Language is a living thing!

Language is a living thing. We can feel it

I1. KnOWledge is a llVlIlg thlng. changing. Parts of it become old: they drop

. . e . : off and are forgotten. New pieces bud out,
I11. Robot is a thng thlng! ‘; spread into leaves, and become big
IV. Al1s a llVlIlg thlng. e branches, proliferating.

V. ... -Gilbert Highet

V1. To Learn to Live vs Life-Long
Learning



1. Evolution of Robotics

Robotics 1s an interdisciplinary field that involves the design, construction,
operation, and application of robots, as well as the development of their control
systems, sensory feedback, and information processing.

Intelligent autonomous robotics refers to a specialized branch of robotics focused
on the design, development, and study of robots that possess both intelligence and
autonomy—meaning they can perceive their environment, process information,
make decisions, and execute tasks with minimal or no human intervention.



1. Evolution of Robotics

a. What was a Robot?

Definition: A robot is a machi
carrying out a complex series of actions

A robot can be guided by an external c

may be constructed to evoke humag#torm, but most ro are task-performing machines, designed
with an emphasis on stark functy#fiality, rather than expressive tagthetics.

https://en.wikipedia.org/wiki/Robot


https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Robot_control
https://en.wikipedia.org/wiki/Humanoid_robot
https://en.wikipedia.org/wiki/Humanoid_robot

1. Evolution of Robotics

a. What is a Robot?

Definition: A robot, nowadays, is an intelligent system which could not only carry out a series
of complex tasks, but also can make their own decisions when under unknown conditions.

S.S. Ge, https://nusmods.com/courses/CEG5303/intelligent-autonomous-robotic-systems, 2023
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b. Historic Development of Robotics

Genesis Generation: Robotics from science fiction

Isaac Asimov coined the term “robotics” in 1942.
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b. Historic Development of Robotics

1st Generation: Industrial Robotics: Robotic Arms/Manipulators (from 1970s) 50 Yrs old

“. . . a programmable, multifunction manipulator designed to move
material, parts, tools, or specialized devices through variable programmed
motions for the performance of a variety of tasks” Robot Institute of
America (1980)

T4
Filament Simulating the
Molten Pool with the Arc-light 8
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b. Historic Development of Robotics
1st Generation: Industrial Robotics (from 1970s)

Robotic arms for industrial automation
* Versatile, programmable

* The workhorse in the automation industry

* Release us from hard labor

The SMART system, Singapore

ADAPTIVE NEURAL
NETWORK CONTROL OF
ROBOTIC MANIPULATORS

Building, Controller Design,

and Numerical Simulation

The SMART system is the first of its
kind in the world for airfoil polishing.

National Technology Award,
Singapore, 1999

http://www.kuka-robotics.com/china/zh/products/
http://www.abb.com/product/zh/9AAC100735.aspx J
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b. Historic Development of Robotics
2nd Generation: Mobile Robotics (from 1990s)

* On Land: Wheeled, Tracked, Legged, ...
* In Air: Rotor Crafts, Helicopters, ...
e Underwater: UUV, AUV, ROV, ...

Queue Vertices

In mobile robotics this becomes 3 questions: e
Modeling, Control

and Coordination of
Helicopter Systems

* WhereamI?
*  Where am I going ?
* How do I get there ?

Ren B, Ge S S, Chen C, Fua C. Modeling, control and coordination of helicopter systems, Springer Science &
Business Media, 2012. 10
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b. Historic Development of Robotics

Autonomous

2nd Generation: Mobile Robotics (from 1990s) Mobile Robots

Sensing, Control, Decision
Making and Applications

Autonomous Vehicle
* 3D Point Cloud Aided Precise Localization
* Hierarchical Topological Path Planning for Efficient Navigation
 Safety-Aware Motion Control Strategy

S

tair Climbing

House and Entrance Identification

£~

Outdoor Navigation
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S.S. Ge and F.L. Lewis, Editors, Autonomous Mobile Robots: Sensing, Control, Decision-Making, and Applications, CRC Press, 2006.

11



1. Evolution of Robotics EBE NUS

b. Historic Development of Robotics
3rd Generation: Social and Service Robotics (from 2000s)

a robot that performs useful tasks for humans or

Service Robots
equipment excluding industrial automation application
Social Robots
humans, being a part of our daily lives in our society.

a intelligent robot with social attributes as

Service

Robotics Social

Robotics

Sophia , The world’s first “robot citizen,
Hanson Robotics

12
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b. Historic Development of Robotics

3rd Generation: Social and Service Robotics (from 2000s)

The study of robots that are able to interact and communicate among themselves, with humans,
and with the environment, within the social and cultural structure attached to its role.
Shuzhi Sam Ge, Founding Editor-in-Chief
International Journal of Social Robotics, 2008
www.springer.com/123A9

Would you like

INIERNATIONALJOURNAL OF

SOCIALROBOTICS

13
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Autonomy:

The capacity to operate independently, without continuous human input, by planning actions, adjusting to
changes (e.g., obstacles, shifting task requirements), and completing objectives on their own.

SLAM allows robots to build a map and localize themselves simultaneously, forming the backbone of
autonomous navigation.

15
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Al Model Stability and Robustness Analysis with Theoretical Guarantee

Cascade Matching

& loU Matching Temporal-spatial ~ Unconfirmed box Clean
. reasoning -
Based OI‘! Loglcal WP1 — Logical inference 1
Reasoning and Detection e Confirmed box,
Appearance nmatche >max_age
Common Sense characteristics (RelD) and box -
movement information * Unmatched box [0]V)
* New detection [™
c E b Match
ascade oX
= Matching A Matched box Confirmed box,
<max_age

Confirmed box""

Kalman Filter
MuIti-Target —»| (basedoncurrent |

Motion Trajectory frame) b
Prediction Based

Matched box

Confirmed box, >N_INIT

Unconfirmed box

Unconfirmed box
UnConfirmed box, <N_INIT

Unconfirmed box

» Integration of Temporal dependencies, spatial reasoning, logical inference, object relationship and contextual
interactions for better robustness and consistence of object trajectory tracking

« Transfer of pose estimation and 3D shape priors for more complete and accurate object representation
« Multi-modal fusion (LIDAR, radar, camera) to enhance detection reliability
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New Potential Field Function for Dynamic Path Planning i
Obstacle
. . . . Robot Goal
The Goals Non-Reachable with Obstacles Nearby (GNRON) Problem is a well-known issue in o= O >
the APF method, where the robot fails to reach the goal due to the combined effects of p@.a.| *
attractive and repulsive forces. This happens when obstacles are positioned close to the target, X o)
creating a strong repulsive field that prevents the robot from reaching its destination.
1 1 1 2 1 1 1 2 Fig. 1. Locations of the robot, goal, and obstacle in a 1-D case.
ol ————— =) ifp(q, < _Jonl————| p"(aq ,» ifp(q, qobs) <
Urep(q) = o1 (p(q, 7ops) p0> ifp(q, qobs) < Po Urep(q) = 21 <p(q, Tobs) Po) P (q qyoal) fp(q, qops) = po
0, ifp(q, 9ops) > Po 0, tfp(q, Gobs) > Po
5
4+ 254
24| =)
5 £
o s
RS s
: :
1F
ong
9s A -0.5 0 05

X

Fig. 2. Total potential function in a 1-D case.

S.S.Ge and Y. J. Cui, “New Potential Functions for Mobile Robot Path Planning” , IEEE Transactions on Robotics Automation, Vol. 16, No. 5, pp.615 -620, October
2000.

17
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Autonomous: Planning for Multi-Agent Systems

Contours of the queue’s
potential trench in the plane

® Queues and Artificial Potential Trenches for Multirobot Formations

Goal: Ensuring stable and flexible robot formations in dynamic, obstacle-filled environme

yv > 4

X
»
Robot M

Deformed .

queue near ~ .

the obstacle Q candyaes s, ‘.“ V,

of target Target
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queug Q, LS o
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Three-dimensional view of the potential trench function

S.S. Ge and Cheng-Heng Fua. "Queues and artificial potential trenches for multirobot formations." IEEE Transactions on Robotics 21.4 (2005): 646-656. .



2. Autonomy and Intelligence

Time Space Intelligence + Intelligent Control = Cybernetics!?

.

Deren Li (Z=81~ Bie 1) WL ANE RN & 68, 20247 [E I 222725 4F<> (On Time Space
Intelligence, Annual Conference of the Chinese Society for Geodesy, Photogrammetry and Cartography,
2024)

Space Time Intelligence System (STIS) software holds the promise of relaxing some of the
technological constraints of spatial only GIS, making possible visualization approaches and analysis
methods that are appropriate for temporally dynamic geospatial data.

Space Intelligence: Geographic Information System (GIS) software is constrained, to a greater or lesser
extent, by a static world view that is not well-suited to the representation of time (Goodchild 2000).

Intelligence: The ability to use sensors (e.g., cameras, lidar) to gather environmental data, analyze it
via algorithms (like machine learning or computer vision), and adapt to new or unforeseen situations.

https://link.springer.com/article/10.1007/s10109-005-0146-7

19
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Message from the President

Control science and engineering are both fundamental and crucial in the successfully transforming science and
technology into practical applications by closing the loop with the physical world to ensure safe, trustworthy and
reliable operations.

With the fast advancement in Computing, Communication, and Control (C3) technologies, many advanced
machines are emerging to revolutionize our work, life, and leisure. Innovations such as autonomous vehicles,
artificial intelligence.

http://acacontrol.org/about-aca/message-from-the-president/ SWATW ASIAN CONTROL ASSOCIATION
W

LEADING IN CONTROL, AUTOMATION AND SYSTEMS

rAv)
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3. Intelligent Control of Robots

3.1 Adaptive Neural Network Control
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3.1 Adaptive Neural Network Control e
ADAPTIVE NEURAL

NETWORK CONTROL OF
ROBOTIC MANIPULATORS

|
|
GE, T H LEE & C J HARRIS

1. Before 90s: Offline training i1s much in use;
2. After 90s: Combining Adaptive and NN Approximative,
online adaptive control was in fashion.

Consider dynamic equations of robots D(@Qi+C(q,¢)§d+G(q) =7
Then, NN control

t
T = Denn (@ dr + Conn (@, Q) dr + Gsun (@) + Kpr + Klf r(r)dr + 7,

0 ¢ Neural Network
—~ 5T . ~ T —_ . ~ T - ‘ontr " Roba
= [{WD} {Ep (CI)}] qr t [{Wc} ' {C-C(Z)}] qr t [{WG} {&¢ (CI)}] + Kpr + K; -[o rdt + t, C}l‘fﬂﬁ;ﬁffﬁgﬁ"t

and Nonlinear

Systems

Adaptive Neural Network Control based on physics, system properties or topologies.

S. S. Ge, T. H. Lee, and C. J. Harris. Adaptive neural network control of robotic manipulators. Vol.

19. World Scientific, 1998
F. L. Lewis, S. Jagannathan and A Yesildirak, Neural network control of robot manipulators and non-

linear systems, CRC, 1998.

23



3.1 Adaptive Neural Network Control

Theorem: if Kp(t) >0,K, =K/ >0 and k,; > |E;|, then the closed-loop error system is an
asymptotically stable, 1.e. ¥ = 0 as t — oo under the following parameter adaptation laws

VT/Dk = Ipk - 6ok (@) 3G 7k
Wer = Ter - k(23,1
Wer = Teréer (@i

where Tpy, o, [or are symmetric positive definitive constant matrices, and Wy, Wey, Wg, are
elements of {Wp}, {W,}, {W;}, respectively

« e€ L} NLY,is continuous, e and é — 0 as t — oo;
* all the signals in the closed-loop system are bounded.

Proof: refer to the proof of Theorem 5.2 in

S. S. Ge, T. H. Lee, and C. J. Harris, Adaptive neural network control of robotic manipulators, World Scientific,
1998. 2
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a. Linearly/Nonlinearly Parametrized Neural Networks

The adjustable parameters appear linearly. The adjustable parameters appear nonlinea

Hidden-layer
STABLE
ADAPTIVE
NEURAL
NETWORK
CONTROL

ADAPTIV
NETWORK C
S.S. Ge

C.C. Hang
T.H. Lee

T. Zhang

Input layer Hidden layer Output layer

y(x) =WTa=WTa(VTx)

S. S. Ge, T. H. Lee, and C. J. Harris. Adaptive neural network control of robotic manipulators. Vol. 19. World
Scientific, 1998.

S. S. Ge, CC Hang, TH Lee and T. Zhang, Stable adaptive neural network control. Vol. 13. Springer Science & .
Business Media, 2013.
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Lemma 1.2: Consider the positive function given by
1 1~ -
V(t) = 5eT(OQe(t) + ST T OW () ()

where e(t) = x(t) — zq(t) and W(t) = W(t) — W* with
z(t) € R", z4(t) € Qg C R*, W(t) € R™. and constants
W* e R™ Q) = Q¥ () > 0and I'(t) = T (t) > 0 are
dimensionally compatible matrices. If the following inequality
holds:

V(t) < —clV(t) + e (8)

then, given any initial compact set defined by

0y = {x(O),xd(O),W(O) | 2(0), W(0) finite ,24(0) € Qd}
(9)

we can conclude that

All the signals are stabe:Next page © Compact Sets: Stability of NN Approximation and Control

Shuzhi Sam Ge, Cong Wang, “Adaptive neural control of uncertain MIMO nonlinear systems”, IEEE Transactions on
Neural Networks; 15(3), pp 674-692, 2004.

26



3.1 Adaptive Neural Network Control EEE NUS

Remark 1.3: Lemma 1.2 gives an explicit theoretical
explanation  of  approximation-based  control
techniques in the literature.

we can conclude that

i) the states and weights in the closed-loop system will re-
main in the compact set defined by

2= {o(0) W OV < comn + g D),
£al0) € 0 W) < i+ 1911}
ii) the states and weights will eventually converge to the lt fOHOWS the deﬁnition Of SGUUB in the sense that

compact sets defined by Lo .

- L bounded initial conditions guarantee the boundedness

@ = {w(0), W) Jim lle()ll = uf, lim |7 = gy} . . :
(10) of all the signals in the closed-loop system provided
the neural network is chosen to cover a compact set of

where constants

2V(0) + 2 . .
Comax = =5 — sufficiently large size.
2V(0) +
W max = )\1'| min

For clarity, it will not be repeated again and again in
the paper, but is understood as such.

mjﬂ-,—E[[),t] )\min(r_l(?-))'

Compact Sets: Stability of NN Approximation and Control .



3.1 Adaptive Neural Network Control =2 NUS

Maticnal Unasersity
of Singapore

Book Review by F. L. Lewis IEEE Fellow, USA
IEEE Transactions on Automatic Control, Vol. 47, No. 11, November 2002

1. A novel family of integral Lyapunov functions is used to
avoid the control singularity problem in feedback
linearization-based designs, and to design neural network
controllers with global stability.

2. This book is well and thoughtfully laid out, and represents
the culmination of years of rigorous and insightful research.

3. Industry engineers will find advanced nonparametric
adaptive controllers of several sorts that are directly
designed to confront problems of plant structure and
uncertainty that normally fall outside the capabilities of
traditional adaptive controllers.




3.2 Innovative Lyapunov Functions based Control

A large class of robotic systems can be described in the strict feedback nonlinear system:

)'cl- = fl(fl) + gi(fi)xiﬂ, i=12,...,n—1
Xn = fn(Xn) + gn(Xn)u

where fi, ..., f, 91, ---, gn are smooth functions, x4, ..., x,, are the states, u and y are the input
and output respectively.

Virtual control coefficients:
* g; = 1:Jiang & Hill, Polycarpou & Ioannou, et al.
* g; are unknown constants with known signs: Krstic, Kanellakopoulos & Kokotovic
* g; are functions of state with known signs and upper bound: Yesildirek & Lewis, Ge & Zhang
* g; are unknown with unknown signs: Ye & Jiang, Ding, Soh & Zhang, Ge & Wang

29
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Strict feedback nonlinear systems

X’i = fl(jl) + gi(a'cl-)xiﬂ,i =12,---,n—1
Xn = fn(Xn) + gn(Xp)u

y =X

Quadratic Lyapunov . _ )
Function = , YA P

Integral Lyapunov
Function

Barrier Lyapunov Function

\

Zone BLF



3.2 Innovative Lyapunov Functions based Control

a. Integral Lyapunov function
As1 < B,(0z, +yq) < 8102, +yq)/

zy
VZl - fO o-ﬁl(o- + yd)do-' glO’ we have
Z2 22 1
with z; = x; — g4, and B (x1) = 1), =< Va1 = —1f0 0g,(62; +yq)do
g1(x1) 2 910 vV
1
can solve the controller singularity problem elegantly as follows: 1
1 . A
U, = —k ()2, — W' S, (V]'Z
1 gl(x]_)[ 1( ) 1 1 1( 1 1)]
and the NN weights are updated by
i, = Tonl(Ss = $1972, )2, - 0], ™~
V= v1[Z1W1T5A'{Z1 - J1:1‘71] Vi = 5212
" 1 1 T &7 G1Y) 2 > 7
and gain k4 (t) = o (1+ [, 081(0z; +yq)d6 + ||Z1W1T51"F ol SAZW A1) Quadratic '
Lyapunov

Function



3.2 Innovative Lyapunov Functions based Control

b. Barrier Lyapunov Functions

Asymmetric BLF
Symmetric BLF v,
T A
Vi
A
: - :'" Z
Ky, 0 kmi} N Hay g !
1 kb 1 124
Vi ==q(z)log——— + = (1 - CI(Z1))108—1
1 kb1 p kgl — Zf p kgl — Zf
V, = Elo g— 5

ky, — 21 where even integer p > n, the function q(:)={1, if *> 0; 0, if*<0}

32



3.2 Innovative Lyapunov Functions based Control

b. Barrier Lyapunov Functions

For the n-th order system with known functions, consider the following Lyapunov function
candidates,

k2
4 =110g 2 . 7 Vi =I/i—1+lZi2’ i=2,...,n
2 Tk -z 2
and the following standard control laws
1 : 1 : g,z
g =_(_f1 _(klf, _Z12)K121 +yd)9 a,=—|—f,+a-K2,-—5—
& P kb1 —Z

1 : :
a, =_(—fl, +a, , — K,z —gi_lzl._l),l =3,...,n, U=a
8

n

where x4, ..., K, are positive constants.

33



3.2 Innovative Lyapunov Functions based Control

It can be obtained that

(1) The error signal z; is ensured to satisfy |z, | < k;, , provided that |z, (0)] < kj,.
(ii) The signals z;(t),i = 1,2, ..., n, remain in the compact set defined by

Q, = {z—n € R™: |z;] < D,,, 1zl < ,/21/,1(0)}

D, = ky,\1—e2n(®
(iii) All closed loop signals are bounded.
(iv) The output tracking error z, (t) converges to zero asymptotically, i.e., y(t) - y,(t) ast — oo,

34
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For the second order system:

15

Xy = 91:’:“;! + X2 il

. 2

X2 = thX1X2 + 61X + (1 +HI}H 05/
1 | ' ' 2 ol N
08|
06| ] -05}
04

y . . . " 02} | adi
e ] % o} 1
04l \ ] -02¢ \ 1 8705 04 03 02 -01 0 0

-04 1 Z,
0.2} 1 -06F J
z % > -0.8 | 1

02} ] : : : : :
-0.1 -0.1 -0.0: 0 0.05 0. 0.15 . . .
o1 o f Asymmetric Barrier Lyapunov Function
0.4+ E 1
-0.6
-0.15 —0:1 —0.I05 6 0.65 0:1 0.15

: Symmetric Barrier Lyapunov Function

Quadratic Lyapunov Function

Tee KP, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. Automatica, 2009, 45(4): 918-927. 35
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c. Zone Barrier Lyapunov Function

Output constraint control has conservative feasibility conditions since not all the states'
motions are concerned in the real system.

Attack Direction of
Wind and Wave

Air-to-air refueling Side-by-side offloading operation



3.2 Innovative Lyapunov Functions based Control

c. Zone Barrier Lyapunov Function

AV

: € practical stabilit
Working Area P v

@
0

l\ : b - | N

I — I X " Fig. 1. Stabilitv relationship.

zone stability

¢ barrier stability

The objective is to set the free position boundaries and design a
controller to ensure the state operates within the constrained
task space.

Liang, Xiaoling, Shuzhi Sam Ge, and Bernard Voon Ee How. "Nonlinear Control Design Based on Zone Barrier Lyapunov Function." International Conference on
Mechatronics, Control and Robotics (ICMCR), IEEE, 2023.
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c. Zone Barrier Lyapunov Function

Theorem 1 (Liang, 2023): Consider the nonlinear system (4.4) with the virtual control (4.5)-(4.7), and the control input
(4.8) under Assumptions 4.1 and 4.2. If the initial condition satisfies —ka2 <z1(0) < kal, the following properties hold:

(1) The output state remains within the constrained area, and

(i1) The states are bounded in the closed-loop system.

The zBLF-based backstepping method has the following advantages
» For convergence performance, sufficient conditions have been proposed through practical control.

» The output state is free to move within a safety domain but does not exceed a set boundary while

achieving a reduction in actuator energy consumption.

Liang, Xiaoling, Shuzhi Sam Ge, and Bernard Voon Ee How. "Nonlinear Control Design Based on Zone Barrier Lyapunov

Function." International Conference on Mechatronics, Control and Robotics (ICMCR), IEEE, 2023. i
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d . Learning-Based Optimized Backstepping Control

With the continuous advancement of information technologies
centered on computing, communication, control, and intelligence

| Auto-mobiles I

(A ZApollo)

Ensure satety and performance for safety-critical systems
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d . Learning-Based Optimized Backstepping Control

* Appropriately arranges the Barrier Lyapunov Function items into the optimized backstepping

* Constrain the state-variables in the designed region during the whole learning process

V = T T T =) . T T
A1 ) :> Error Reinforcement | — "o

’ Dynamic Learning

| I 7N

Subsystem 1 i

z : 0.5

Barrier Lyapunov Z

: . : 5

~ Function Safety region
: : -0.5

Error Reinforcement
——— Learning

: — WA\ o
: > -1

.. e R
'kb1 0 kn, Subsystem n actual control :
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Guaranteed safety and solvable performance control for safety-critical system

Zhang Y, Ge S S, Liang X, et al. "Barrier Lyapunov Function-Based Safe Reinforcement Learning for Autonomous Vehicles With Optimized Backstepping," in IEEE
Transactions on Neural Networks and Learning Systems, vol. 35, no. 2, pp. 2066-2080, Feb. 2024, doi: 10.1109/TNNLS.2022.3186528.



3.2 Innovative Lyapunov Functions based Control

B Step1i-n:

The optimal performance index and the optimal control are
both unknown, in which two independent NNs are used to
approximate the uncertain terms in them. With this design,
the solutions (estimations) is then founded via the
subsequent procedure of policy evaluation and policy
improvement under the Actor-Critic framework.
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3.2 Innovative Lyapunov Functions based Control

d. BLF - Safe Reinforcement Learning (SRL)

¢ Comparison Simulation

With the proposed BLF-SRL, the
safety-related state-variables pgLp-SRL ——
trajectories are under control
during the whole learning period
and enable the state-variables

away from the safety boundary OBSC+CBF p— o175 R — D)
rather than an auxiliary control - = =BLF-SRL(c4) oo OBSC-CBF (c5)
when approaching the safety = oBSC —— T onseonr(et) ——onsore” |
boundary. - — =BLF-SRL(c5) - OBSC-CBF(c6)
0 3 (:I} é 1I2 15
Time

Different from the proposed BLF-SRL, the auxiliary safe controller is used to compensate the original control inputs to realize
safe control when the state-variables are going to be outside the safe region. If the state-variables are insider of safe region,

the control will retained by its original computed control inputs.
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a. Time Synchronized Control

Dongyu Li
Shuzhi Sam Ge
Tong Heng Lee

The magic touch Time-Synchronized
Control: Analysis

: : : and Design
» Classical sign function -

+1, x, >0

sign, (x,){

-1, x, <0

ADAPTIVE NEURAL
NETWORK CONTROL OF
ROBOTIC MANIPULATORS

» Unit Vector function

sign, (x) = i

[l x

()
/ (a) 2-D example (b) 3-D example
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3.3 Multi Agents Colaborative Control

a. Time Synchronized Control

Finite/fixed/predefined-time Time-synchronized control:

control: » Simultaneous Convergence in time

space

» Adjustable settling time Ratio persistence in state space

> High precision,

A\

|
' | I |
' | I |
| | I |
' | I |
' | I |
| | I |
' | I |
' | I |
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I . L3 o
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| | |
I 6 | | 6 |
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1 0}‘ | I (}f\\ ________________ Y |
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LiD, Ge S S, Lee T H. Time-Synchronized Control: Analysis and Design[M]. New York: Springer, 2022. "
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%

a. Time-synchronized control for multi-agent systems:

Definition 5: (Time-Synchronized Consensus). A group of
networked agent systems achieve time-synchronized consensus
if and only if all the agents reach consensus synchronously, 0 5 10 15 20

. Time (s)
i.e., we have e

Fig. 8. Performance of the control law (29).

li i(t) —x;(t)] =0, 18

limg > i) — a0 =0, (18)
1, EVe,17£] “ | | B
with a positive time instant 7', while for any time instants #; : | S
and t9 satisfying 0 <t <ty <71 and any 7 € V., we have . ]

@ik (1) — xkll £ 0, Vi1 <t <ta, (19) T

D

-40 ! L 5 1 8
0 5 10 15 20

Time (s)

Fig. 9. Performance of the control law (30).

D. Li, S. S. Ge, T. H. Lee, Simultaneous-Arrival-to-Origin Convergence: Sliding-Mode Control through the Norm-Normalized Sign Function, /EEE

Transactions on Automatic Control, 2021.
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3.3 Multi Agents Colaborative Control

a. Maneuvrable Formation Control in Constrain&ﬂ

» Multi-layer formation control
» Cooperative circumnavigation

» Formation tracking in constrained space

» TSC in constrained space B e

<100

D. L1, X. Liu, Q. Hu and S.S.

100

Ge, Maneuverable Formation Control in Constrained Space,

Maticnal Unasersity
of Singapore

=2 NUS
%

Space
‘ ______ ;o
I A
UAV 4 ; ’*\» \\I LY | n/ ‘ ) '
® @ MANEUVERABLE FORMATION
CONTROL IN CONSTRAINED
SPACE

Dongyu Li, Xiaomei Liu,
Qinglei Hu, and Shuzhi Sam Ge

450
400
350

: sy RC Pres
Automation and Control Engineering @ TCE E:Sr
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X | % Agents in the second layer

CRC Press, 2024



3.3 Multi Agents Colaborative Control

b. Coded Event-triggered Control

Event-trigger Mechanism

Actuator [

Plant

Encoding-decoding
Scheme

Maticnal Unasersity
of Singapore

=2 NUS
5/

Ruihang Ji
Shuzhi Sam Ge
DongyulLi

—>»| Sensor

Constrained

Nonlinear
Control:
Performance and

/ __| Encoding-decoding
Scheme

Event-trigger Mechanism

‘Robustness

— ¥ Control

Sk = Sm. kSm—1,k - - - S2,kS1 k)

Other Agents

Ruihang Ji, Shuzhi Sam Ge and Dongyu Li. Constrained Nonlinear Control: Performance and Robustness. Springer, 2025.
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b. Coded Event-triggered Control Dynamic-coded Control

* Dynamic encoding algorithm
* Difficult to decipher
e Self-adjustable strategy

Rate-coded Control
Related to signal and its
Coded Control changing rate

. . . Mixed rules protocol
* Multi-bit encoding algorithm « More secure communication
1-bit Control * Fixed but multi-rule protocol
. On-Off protocol * Secure communication

* Fixed single rules
* Easily deciphered

Ruihang Ji, Shuzhi Sam Ge, and Kai Zhao. Coded event-triggered control for nonlinear systems. Automatica, 2024, 167: 111753.
Ruihang Ji, and Shuzhi Sam Ge. Rate-coded secure control for multi-agent systems. IEEE Transactions on Automatic Control (2024).
Ruihang Ji, and Shuzhi Sam Ge. Secure Asymptotic Consensus Control for MASs. IEEE Transactions on Automatic Control (2025).
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b. Coded Event-triggered Control (Rate-) Coded Event-triggered Control

' » Reduce communication bit consumption
for each transmission

Event-triggered/Self-triggered Control

» Enhance communication security as

|
|
|
|
I sensitive information has been encoded

» Reduced Resource Usage (Computational

T SRR SIS » Reduced Resource Usage (Computational

» Improved Efficiency with Performance and Communication Savings)
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Ruihang Ji, Shuzhi Sam Ge, and Kai Zhao. Coded event-triggered control for nonlinear systems. Automatica, 2024, 167: 111753.
Ruihang Ji, and Shuzhi Sam Ge. "Rate-coded secure control for multi-agent systems." IEEE Transactions on Automatic Control (2024).



3.3 Multi Agents Colaborative Control

c. Time-synchronized Optimized Control

First driving gear Synchronizer Second driving gear

Drive
motor

HlH

m
Al

wheel = _|

H
]
Tl

Final drive

Powertrain Differential

1. The synchronization control for shift control of inverse
automated manual transmission to rejects jerk

3. Vehicle Platoon Control: Synchronously motion
and cooperatively work

National University
of Singapore
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2. Synchronized control governor for autonomous
vehicle motion control

I
I
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‘-I
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(¢)
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(d)
4. Adaptive reference-free trajectory planning of

autonomous vehicles under multi-scenario driving 50
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c. Time-synchronized Optimized Control with safety guarantee while learning
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Y. Zhang, X. Liang, D. Li, S. Sam Ge and T. Heng Lee, "Bi-Layered Synchronized Optimization Control With Prescribed Performance for Vehicle
Platoon," in IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 11, pp. 16473-16489, Nov. 2024, doi: 10.1109/TITS.2024.3432149.
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c. TSOC performance with safe reinforcement learning (SRL)
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joins or leaves the platoon; control inputs are especially smaller in platoon is dynamically changing, the SOC method leads to a reduced

the first about 2s with SOC frequency of occurrences where the control input limits are attained.
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4. Projects Currently on Going

4.1 Development of Stable, Robust and Secure (SRS)
Intelligent Systems for Autonomous Vehicles

e PI: Prof Shuzhi Sam Ge

« Co-Pls: Yong Liu, Liangli Zhen, Rong Su, Mike Zheng Shou, Lin Zhao,
Huazhu Fu, Rick Siow Mong Goh and Ong Yew Soon
B2 &
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4.1 Grand Challenge Award in Robust Al, Al Singapore EBE NUS

a. Autonomous Vehicles and Motivation
With the great development of Control, Communication, and Computing (C?), high-performance
autonomous vehicle systems are under heavy investment and critical research!

Model based, Learning-based, optimization and adaptive technologies, among other, are being
used to solved complex and demanding requirements,

With the continuous advancement of information technologies centered on computing,
communication, control, and intelligence
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Vehicle Automation &
Intelligence Technology

Decision

Planning
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4. Projects Currently on Going

4.2 Modular Reconfigurable Mobile Robots (MR)?

Tao Pey Yuen (SIMTech), Mohan Rajesh Elara (SUTD) , Shuzhi Sam GE (NUS),
Albertus Hendrawan Adiwahono (I12R), Lim Tao Ming (ARTC)
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4.2 Modular Reconfigurable Mobile Robots

A modular reconfigurable mobile robot system enabling quick assembly, terrain adaptability,
heavy payload support, and fast repair through reusable hardware and software blocks.

(" )
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-

Software Building Blocks

Design Library

~N

Physical Functional Building Blocks

.
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r
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4.2 Modular Reconfigurable Mobile Robots

Expedient Repair and
Upgradability

* Quick repair via module replacement
* Incremental upgrade via module addition

Reconfigurability and
Flexibility

* Reconfigure for current production needs
Share resources for optimized usage

Quick Customization

* Reduce development costs

* Improve return on investment for end-
users

* Enable automation for niche applications




4.3 Horizon Enripe Program: INPACE

INPACE: INdo-PACific-European Hub for Digital Partnerships:
Shuzhi Sam Ge, Singapore Lead and Asian Co-lead,
INPACE: INdo-PACific-European Hub for Digital Partnerships:

Trusted Digital Technologies for Sustainable Well-Being,
EUS$2.5million Horizon Europe Program,

4D

) € i
,)" etV
&

e

Program Director, Dr Svetlana Klessova, COST- European

Cooperation in Science and Technology, 1 January 2024-30 June
2027.

General Chairs:
Shuzhi Sam Ge, Singapore; Eva Pejsova, Belgium; Sebastian Engell, Germany; Franck Le Gall, France

INPACE: EU-Indo-Pacific Digital Partnership Conference 2025, 28 -29 Oct 2025

https://inpacehub.eu/eu-indo-pacific-digital-partnership-conference-2025
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Simplified understanding: Left brain = language/logic, Right brain = creativity

Complex thinking (logic, problem-solving) uses networks across both sides of the brain,
working together. It is more about teamwork than strict left/right division!

For example: - Left brain might handle the "rules" (e.g., math formulas).- Right brain might help
with seeing the "big picture" (e.g., solving a puzzle by recognizing patterns).
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Asian Control Association (ACA)

An international organization * Executive Board (EB): President, President Elect, Vice
Presidents and General Secretary (GS)

that that strives for significant « Administrative Committee (AdCom)

impact and leadership in promoting . Advisory Committee

control science and engineering in . Steering Committee

Asia and Oceania, and 15 Technical Committees with members internationally
internationally. * ACA Fellow Award
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* Local Chapters
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